ラインスキャンカメラ 取扱説明書 型式 TLC-16K5FOL TL-16K5FOL

TAKEX 竹中センサーグループ

竹中システム機器株式会社

【据え付けおよび配線について】

! 注意

仕様に定められた配線・配置をしてくだ さい。

火災や故障の原因になります。

配線にストレスがかからないような方法 で行ってください。

感電や火災の原因になります。

配線は、電源を切った状態で行ってくだ さい。

感電・故障の原因になります。

【使用方法について】

҈Λ警告

通電中は端子や基板に触れないでください。 感電や、誤動作による事故の原因になります。

可燃物を近くに置かないでください。 火災の原因になります。

仕様に定められた方法以外で使用しない でください。

人身事故や故障の原因になります。

放熱穴がある場合、ドライバなど金属類 を押し込まないでください。

感電・故障の原因になります。

- 1

介 注音

製品の開口部に異物を押し込まないでく ださい。

感電や故障の原因になります。

放熱穴がある場合は、ふさがないでくだ さい。

本体内部の温度が上がり、火災や故障の原因になります。

【メンテナンスについて】

! 注意

分解したり修理しないでください。

火災・感電・故障の原因になります。

有効期限の過ぎた電池は交換してください。 液洩れなどにより、故障や誤動作の原因にな ります。

注意ラベル等のある製品は、ラベルの内容が見えなくなったら貼りかえてください。 交換の際は、弊社までご相談ください。

保守、点検は電源を切った状態で行って ください。

電源を入れたまま作業すると、感電の恐れがあります。

【廃棄について】

҈≜告

電池は公的機関が定めた方法で廃棄して ください。

破裂の恐れがあり、火災・人身事故の原因に なります。

製品を廃棄する場合は、産業廃棄物として処理してください。

破裂の恐れがあり、火災・人身事故の原囚に なります。

改版履歴(Revisions)

版	作成年月日	改版記事	備考
Rev	Date	Changes	
1.00	2024-01-06	初版	
1.01	2024-03-29	誤記訂正	
1.02	2024-05-23	訂正	V1.05
	2024-06-24	誤記訂正	

目 次

1	CMC	OS ラインスキャンカメラ	1
	1-1	概要	1
	1-2	特徴、性能	1
	1-3	カメラ内部構成	1
	1-4	カメラ性能仕様	2
	1-5	受光感度波長	3
2	/\-	-ドウェア入出力	4
	2-1	OptC:Link 入出力コネクタ(SPF+コネクタ)	5
	2-2	カメラ電源コネクタ	5
	2-3	IO コネクタ	6
	2-4	周辺機器•接続図	7
	2-5	LED 表示灯	7
	2-6	光ファイバーの接続手順	8
3	ソフ	トウェア&コントロール	9
	3-1	初期設定	9
	3-2	カメラコントロールについて	10
	3-3	カメラ初期状態(電源立ち上げ時)	11
	3-4	カメラの撮像動作と露光時間	12
4	デジ	ジタル出力データ	15
	4-1	アナログ・デジタルデータ処理部	15
	4-2	ゲインコントロール	16
	4-3	FFC 機能設定	17
	4-4	設定値のセーブとロード	21
	4-5	テストパターンの出力	22
	4-6	デジタル出力タイミング	23
5	通信	ミコマンド一覧	29
6	その)他注意事項	34
7	外形	 図	35

1 CMOS ラインスキャンカメラ

1-1 概要

本ラインスキャンカメラは、CMOSタイプのラインスキャンカメラです。

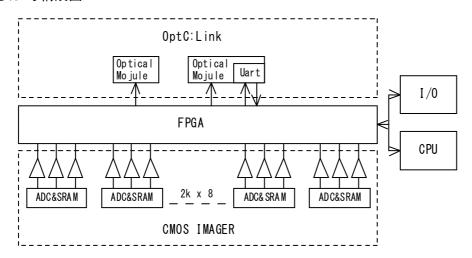
1-2 特徵、性能

TLC-16K5FOL,TL-16K5FOL は、16384画素のCMOSイメージセンサ素子を用いたラインスキャンカメラで以下のような特徴を持っています。

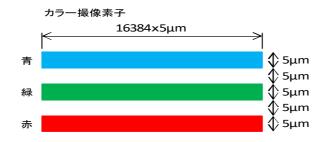
- (1) 画素数16384画素で高分解の検査が可能です。
- (2) 画素サイズ 5.0 μm × 5.0 μm で高精細の画像が得られます。
- (3) Opt-C:Link 出力で高スキャンレートです。

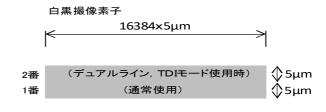
TL-16K5FOL:38kHz(シングルライン, 白黒)

:68kHz(34kHzx2)(デュアルライン, 白黒)


TLC-16K5FOL: 22kHz(RGB 3ライン,カラー)

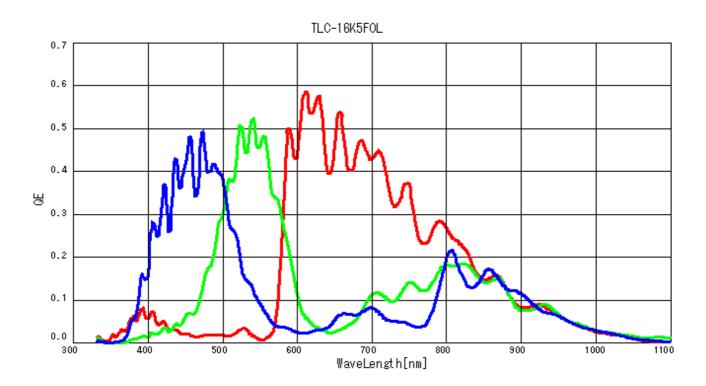
- (4) Opt-C: Link 出力により最大100mの長距離伝送ができます。
- (5) 通信にてゲイン、オフセットの調整が容易です。
- (6) グローバルシャッター機能及び FFC 機能搭載しています。
- (7) DC12V 単一電源動作。低消費電力。
- (8) データレート 1,120MHz の高速動作。
- (9) 独自の回路設計、機構設計にて最大限に小型、軽量にしています。

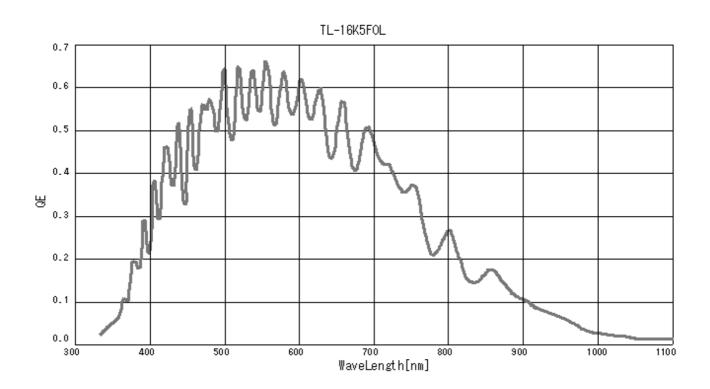

1-3 カメラ内部構成


画素サイズ $5.0 \, \mu \, \text{m} \times 5.0 \, \mu \, \text{m}$ 、有効画素数 $16384 \, \text{画素の高感度}$ 、高速 CMOS を搭載しています。 次頁にカメラ構成を記載しましたので参照して下さい。

●カメラ構成図

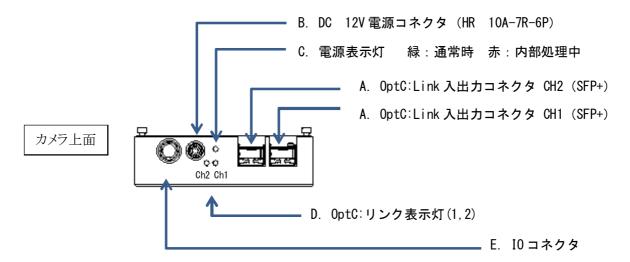
●撮像素子画素位置

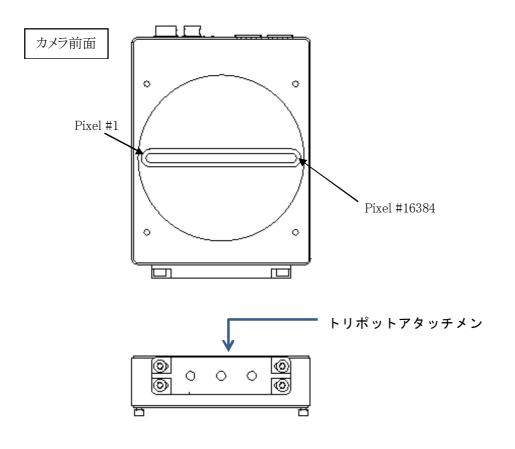

1-4 カメラ性能仕様


型式					TLC-16K5FOL	TL-16K5FOL	
撮	像		素	구	RGB3Line	mono2Line	
掫	1家 亲		亲 于		CMOS Image sensor	CMOS Image sensor	
画		素		数	16384 x 3Line	16384 x 2Line	
		糸		奴	ライン間隔 5μm		
画	画 素 サ イ ズ		ズ	5.0 <i>μ</i> m >	< 5.0 μ m		
<u>受</u> 飽	受 光 素 子 長		長	81.92mm			
飽	飽 和 露 光 量		量	40ke-(typical)			

カメラ仕様						
Opt-C:Link データ出力	Opt-C:Link	マルチモード				
データレート	1,120MHz(70	MHzx16TAP)				
スキャンレート(scan/sec)	22.7kHz	シングルラインモード 38.9kHz				
スキャンレード(scarr/ sec)	22./KHZ	デュアルラインモード 68.0kHz(34.0x2)				
ライン転送パルス入力	44.1 <i>μ</i> sec(Min)	シングルラインモード 25.7 μ sec(Min)				
パン転送バルススカ		デュアルラインモード 29.5 μ sec(Min)				
ゲイン		0.7倍 ~ 1.0倍				
7 7	デジタルゲイン 1~	3.9倍 0.015ステップ				
電源容量	+12V ±0.5\	V(1.0A以下)				
動作温度範囲	+10~+40°C					
動作湿度範囲	動 作 湿 度 範 囲 85% MAX					
保存温度範囲	-10°C	~+65°C				

	メカニカル仕様					
レ	ンズ	マ	ゥ	ン	۲	M 95, P=1.0mm
フ	ラン	ジ	バ	ツ	ク	12mm
	→		<i>h</i>		Ь	12V電源 HR10A-7R-6Pヒロセ電機
	ネ		•		ン	SFP+コネクタ×2
重					量	700g以下
外	形		寸		法	102(W)×130(H)×34(D)突起部除く


1-5 受光感度波長



2 ハードウェア入出力

- A. 本ラインスキャンカメラは OptC:Link 仕様ですので2本の光ファイバーケーブルでフレームグラバー(Framegrabber)に接続します。コネクタのタイプは LC です。
- B. 12V 電源入力に6Pin ヒロセ製コネクタを使用しています。
- C. 12V が供給されると電源表示灯(緑 LED)が点灯します。
- D. リンク表示灯:カメラとキャプチャーボード間の状態を表示します。
- E. GPIOコネクタ:外部入出用コネクタです。

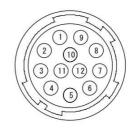
2-1 OptC:Link 入出力コネクタ(SPF+コネクタ)

光モジュール: Avago 製 57D9AMZ 相当品x2

チャンネル数:	2CH
伝送速度:	6.25 Gbps
伝送モード:	マルチモード
レーザー形式:	850nm VCSEL
レーザー安全規格:	Class1
コネクタ形状:	LCコネクタ
ケーブル仕様:	コア径: 50 μ m/62.5 μ m,クラッド径: 125 μ m
ケーブル最大長:	100m(50 μ m OM3)

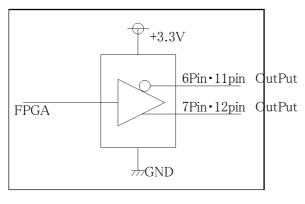
2-2 カメラ電源コネクタ

ピン番号	信号名	ピン番号	信号名
1	+12V	4	GND
2	+12V	5	GND
3	+12V	6	GND

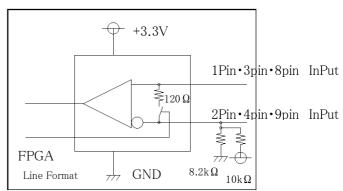

*電源接続コネクタ(HR 10A-7R-6Pヒロセ電機)

(カメラ外側より見たピン配置)

- (注)カメラに各ケーブルを接続する時は、必ずカメラ電源、接続機器の電源を切っておいて下さい。 (光ファイバーケーブルは電源を落とさず接続が可能です。)
- (注)当社の別売品カメラ電源以外の電源を使用する場合は、下記定格のものをご使用下さい。 ご使用の際には必ず電源とカメラ接続ピンの対応を事前にご確認下さい。
 - ·電源電圧: DC12V±0.5V
 - ·電流容量: 1A 以上(推奨)
 - (電源投入時は1.2A以上の過渡電流が流れる事が有りますのでご考慮下さい)
 - ・リップル電圧: 50mVp-p 以下(推奨値)
- (注)起動時に撮像素子の温度管理、撮像素子が出力する画像データの位相調整などを行います。 そのため、起動(LED が緑点灯)まで5分程度かかる場合がありますが、異常ではありません。
- (注)電源投入から5分経過しても正常に動作しない場合、一度電源をoffして30秒以上放置してから、再度電源をonしてください。


2-3 IO コネクタ

ピン番号	信号名	内容	10
レノ田々			10
1	INPUT_0-	LVDS	10[0]
2	INPUT_0+	LVDS/TTL	10[0]
3	INPUT_1-	LVDS	IO[1]
4	INPUT_1+	LVDS/TTL	10[1]
5	Gnd	Gnd	_
6	OUTPUT_0-	LVDS	IO[2]
7	OUTPUT_0+	LVDS/TTL	10[2]
8	INPUT_2-	LVDS	10[3]
9	INPUT_2+	LVDS/TTL	10[3]
10	N.C		_
11	OUTPUT_1-	LVDS	10[4]
12	OUTPUT_1+	LVDS/TTL	10[4]



*I/O 接続コネクタ(HR 10A-10R-12P ヒロセ電機) (カメラ外側より見たピン配置)

外部出力回路

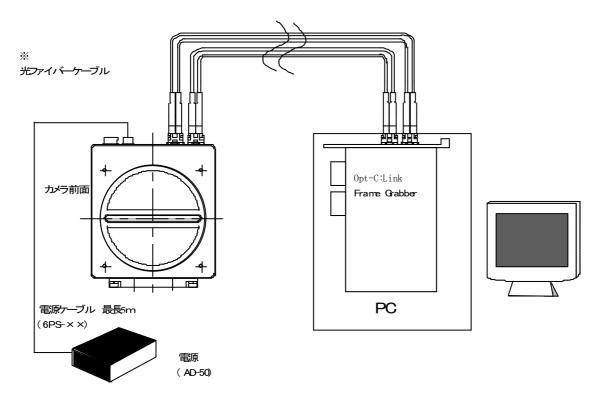
外部入力回路

LTC2854 (LinearTwchnology)

LTC2854 (LinearTwchnology)

出力レベル

- ·差動信号:RS422/LVDS
- •シングルエンド信号(+ピン) Voh=2.4V、Vol=0.4V


入力レベル

- ·差動入力:RS422/LVDS
- ・シングルエンド信号(+ピン) Vh=2.0~5.0V、VI=0~0.8V
- ※差動入力を使用する場合は、終端抵抗を有効にする必要があります。

入力ポート	差動/ シングルエンド	
sync入力	Input0	
syncb入力	Input2	シングルエンド
tirg入力	Input1	

※シングルエンドに設定されていますので、各入力の+ピンに接続してください。

2-4 周辺機器・接続図

カメラと Opt-C:Link FrameGraber を接続する光ケーブルは下記仕様のものをご使用ください。

光ケーブル仕様	
コネクタ形状	LCコネクタ
ファイバ種別	Multi Mode Fiber(OM3)
レーザー波長	850nm
クラッド径	125um
コア径	50um
ケーブル長	100m以下

2-5 LED 表示灯

電源表示灯

起動時

緑	起動完了			
オレンジ	起動処理中			
赤	起動処理不整合。再起動してください。			
N.	busyコマンドに'128'を返信します。			
動作中				
緑	通常動作中			
赤	FFC補正動作中、FFCデータのSAVE/LOAD動作中			
小	busyコマンドの返信は、通信コマンド表を参照してください。			

リンク表示灯

緑点灯	送信・受信は正しく接続されている。 チャンネルも正しく接続されている。
緑点滅	送信・受信は正しく接続されている。 チャンネルが逆に接続されている。
消灯	送信・受信が逆に接続されている。 または、未接続。

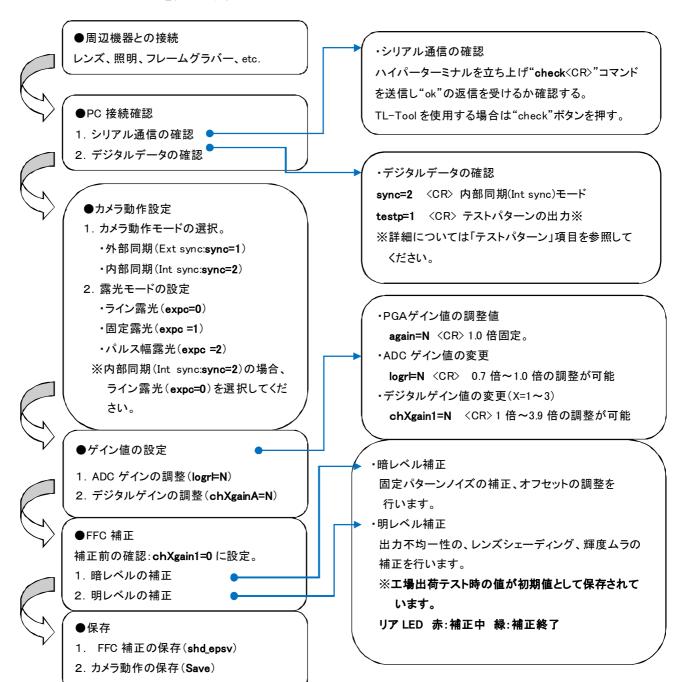
2-6 光ファイバーの接続手順

- 1. フレームグラバー(APX-3800)が装備されたPCとカメラの電源をONしてください。
- 2. 光モジュールのキャップ(黒色)と光ファイバーのキャップ(白色)を外してください。
- 3. 1 対 (2 本) の光ファイバーケーブルをフレームグラバー (APX-3800) の ch1 に接続します。2 本ともカチッとロックされるところまで差し込んでください。
- 4. 同じ光ファイバーケーブルの反対側をカメラの Opt-C:Link 入出カコネクタのch 1 に接続してください。 入出カコネクタのch 1 が正しく接続された場合は、Opt-C:Link リンク表示灯(ch1)が緑点灯します。 緑点灯しない場合は、入出力が正しくありませんので、どちらかの機器の光ファイバーケーブルを外し て、左右を入れ替えて再度接続してください。Opt-C:Link リンク表示灯(ch1)が緑点灯するようになります。
 - 緑点滅する場合は、チャンネルが合っていませんので、光ファイバーケーブルを外して、左右そのままの並びで ch2 側に接続してください。緑点灯に変わります。
 - ※全く点灯しない場合は、光ファイバーケーブル、カメラ、フレームグラバーのどれかの故障が疑われます。
- 5. 続いてフレームグラバー (APX-3800) の c h 2 に光ファイバーケーブルを接続します。 3 項の手順でカメラに接続してください。
 - Opt-C:Link リンク表示灯(ch1, ch2)の両方が緑点灯になれば、接続は完了です。

3 ソフトウェア&コントロール

3-1 初期設定

3-1-1 設定前の注意事項


本カメラは必ず FFC 機能を使用して下さい。

(レンズ及び素子等による波形ムラをフラットに調整する機能です。)

以降の設定はすべてハイパーターミナルを使用した通信コマンドにて説明をしています。

3-1-2 初期設定手順

※以降"check"このように太字で記載している文字は通信コマンドを表します。また文中の"〈CR〉"はキャリッジリターンを表します。

3-2 カメラコントロールについて

TAKEX 製ラインスキャンカメラはカメラリンク経由のシリアル通信により各動作のコントロールをすることが可能です。・カメラの動作設定 ・ゲイン値の調整 ・FFC 補正の実行 ・テストパターンの出力 これらはシリアル通信を介し行います。シリアル通信インターフェースは ASCII に基づいたプロトコルを使用します。

通信プロトコル

Baud rate :9600bps

Data Length :8bit

Start Bit :1bit

Stop Bit :1bit

Parity :None

Xon / Xoff Control :None

コマンドフォーマット

〈CR〉 ……キャリッジリターン

以下は通信コマンドマニュアル内で使用。

N ……値を示す任意の数字。

X ……出カライン(R=1,G=2,B=3 or 1,2)を示す。

[Notes]

- ・コマンド名は小文字。大文字は無効。
- ・入力文字は全て半角。全角は無効。
- ・空欄は無効
- ・改行コードは CR(0x0D)で示されているが、LF(0x0A)、CR+LFも使用可能。 ただし返値の改行コードは常に CR のみです。

<ハイパーターミナル使用時>

・入力ミスをした場合再度入力が必要です。(カーソル移動による訂正は無効)

カメラシリアル出力

OK ・・・・・・カメラのコマンド入力が有効となった場合。

NG ……存在しないコマンドを入力した場合

NE ……コマンドは正しいが入力パラメータの値が範囲が超えている場合

[例]

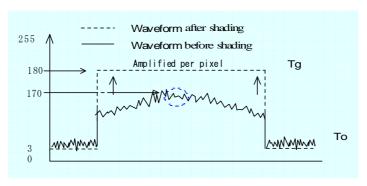
User input : Id? 〈CR〉 カメラ ID を参照する。(コマンド末尾の"?"は省略可)

Camera output :0

User input :sync=1 〈CR〉 外部同期(Ext Sync)に設定する。

Camera output :OK

3-3 カメラ初期状態(電源立ち上げ時)

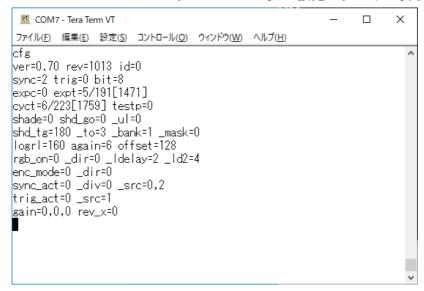

3-3-1 購入時の設定

カメラは電源立ち上げ時以下のモードに設定されています。

- ·内部同期(Int sync:sync=2)
- ·ライン露光露光(expc= 0)
- ·FFC 補正 ON(shade= 1)※1
- •PGA ゲイン(again=0)
- ・ADC ゲイン(logrl=96)
- ・デジタルゲイン(chXgain1=0)(X=1~3)
- ※1、FFC 補正のパラメータは工場出荷テスト時のパラメータが保存されています。

暗レベルの補正値は内部同期(Int sync),again=0,logrl=96 の状態でオフセット(shd_to=3)が3階調に設定され

ています。明レベルの補正値は出荷調整用のレンズを使用し、波形中央部 170 階調に合わせ目標階調(shd_tg=180)で 180 階調に調整されたゲイン値が保存されています。



3-3-2 カメラ電源投入時の設定確認

電源投入時、シリアル通信を使用し cfg コマンドを実行する事によってカメラの設定状態を確認することができます。下図はハイパーターミナルを使用し得たカメラ内部設定リストです。

cfg<CR>

カメラ内部設定が出力されます。 下図のようにカメラ内部設定のリストが出力されます。 カメラのコマンドに対して設定パラメータが表示されます。

3-4 カメラの撮像動作と露光時間

3-4-1 カメラ動作モード(同期設定)

カメラの撮像動作は2種類の切り替えが可能です。

- ・外部の Sync 信号をカメラに入力することによって撮像を開始するモード 外部同期(Ext Sync)があります。信号が入力されない場合、カメラは出力を停止します。
- ・カメラ内部で同期信号を生成し撮像するモード 内部同期(Int Sync)

sync=N 〈CR〉 カメラ SYNC 入力設定をします。

N=1:外部同期(Ext Sync) N=2:内部同期(Int Sync)

・内部同期(Int Sync)の周期は、通信コマンドで行います。

cyct=N1, cyclt=N2 or cyctw=Nw or cyctn=Nn

内部周期 = (**cyct の値** x 256 +**cyclt の値**+ 1) x 0.025 単位 : μ sec

= (cyctw の値 + 1) x 0.025 単位: μ sec = cyctn の値÷ 1000 単位: μ sec

※どのコマンドを使用してもカメラの内部の同じレジスタを使用しますので、最後に送信したコマンドが有効になります。

内部周期設定の最小値。

TL-16K5FOL(白黒)

シングルラインモード

設定	スキャンレート	
cyct , cyclt	4 , 3	
cyctw	1,027	38.9 kHz
cyctn	25,700	

デュアルラインモード

設定	スキャンレート	
cyct , cyclt	4 , 149	
cyctw	1,173	34.0 kHz
cyctn	29,350	

TLC-16K5FOL(カラー)

設定	スキャンレート	
cyct , cyclt	6 , 223	
cyctw	1,759	22.7 kHz
cyctn	44,000	

3-4-2 露光モード設定

露光モードは3種類の切り替えが可能です。

- ・ライン露光モード: SYNC 信号の立ち上がりで露光を開始し、次の SYNC 信号まで、露光する。
- ・一定露光モード: SYNC 入力の立ち上がりで露光を開始し、カメラ内部で生成された時間露光する。
- ·パルス幅露光モード: SYNC 信号が有効レベルの間、露光する。

これらはご使用の環境によって選択することが可能です。

expc= N 〈CR〉 カメラの露光制御の状態を設定します。

N=0:ライン露光 N=1:一定露光

N=2:パルス幅露光

・一定露光(expc=1, sync=1or2)時の露光時間の設定は、通信コマンドで行います。

expt=N1, explt=N2 or exptw=Nw or exptn=Nn

露光時間 = (expt の値 x 256 +explt の値+ 1) x 0.025 単位: μ sec = (exptw の値+1) x 0.025 単位: μ sec = exptn の値÷ 1000 単位: μ sec

- ※どのコマンドを使用してもカメラの内部の同じレジスタを使用しますので、最後に送信したコマンドが有効になります。
- ※露光時間の設定パラメータは、内部同期(Int sync:sync=2)と外部同期(Ext sync:sync=1)で 共用しています。
- ※露光時間を一定以上に長くすると、カメラの周期も長くなります。周期に影響のない最長の露 光時間の設定値は、

TLC-16K5FOL: exptw の値 = cyctw の値 + 1-288

露光時間=周期 - 8.7μ秒

TL-16K5FOL: exptwの値 = cyctwの値+1-288

露光時間=周期 - 8.7μ秒

•内部同期(Int sync:sync=2)&ライン露光(expc=0)時の露光時間

•TLC-16K5FOL

露光時間 = (cyct の値 x 256 + cyclt の値+ 1 - 288) x 0.025 単位: μ sec

= (cyctw の値 + 1-345) x 0.025 単位: μ sec = (cyctn の値 - 8.7) ÷ 1000 単位: μ sec

•TL-16K5FOL

露光時間 = (**cyct の値** x 256 + **cyclt の値**+ 1- 288) x 0.025 単位: μ sec

= (cyctw の値+1-345) x 0.025 単位: μ sec = (cyctn の値-8.7) ÷ 1000 単位: μ sec

カメラ動作モードと露光モードの関係

コマンド	カメ	う動作	expt(explt)設定	cyct(cyclt)設定
sunc=1 expc=0	外部同期(Ext sync)	ライン露光	無効	無効
sync=1 expc=1	外部同期(Ext sync)	一定露光	有効	無効
sync=1 expc=2	外部同期(Ext sync)	パルス幅露光	無効	無効
sync=2 expc=0	内部同期(Int sync)	ライン露光	無効	有効
sync=2 expc=1	内部同期(Int sync)	一定露光	有効	有効
sync=2 expc=2				

※内部同期(Int sync:sync=2)&一定露光(expc=1)の場合、露光時間設定が優先されます。設定された 周期内に露光時間が収まらない場合は、設定された周期の整数倍で動作します。

3-4-3 カラーギャップ補正の設定(TLC-16K5FOL)

水平分解能と搬送方向の分解能が一致した撮像環境、かつ、遅延設定でRGBラインの映像出力タイミングを一致させることで、カラーギャップを補正することができます。

[基本設定]

rgb_on=1 , rgb_ldelay=2 , rgb_ld2=4

3-4-4 デュアルラインモード設定(TL-16K5FOL)

水平分解能と搬送方向の分解能が一致した撮像環境、かつ、遅延設定で 2 つのラインの映像出力タイミングを1ライン分ずれた位置にする前提で、デュアルラインモードを使用することで、対応可能搬送速を向上することができます。

[基本設定]

row=1 , ldelay_on=0 , ldelay=1

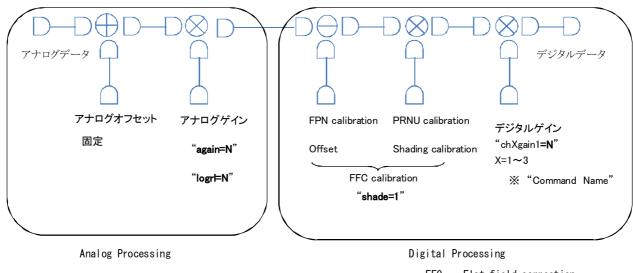
3-4-5 TDI(2ライン)モード設定(TL-16K5FOL)

水平分解能と搬送方向の分解能が一致した撮像環境、かつ、遅延設定で 2 つのラインの映像出力タイミングを一致させることを前提に、TDIモードを使用することで感度を 2 倍にすることができます。出力画素数は 16384 画素のまま変わりません。

[基本設定]

tdi=1 , ldelay_on=1 , ldelay=1

上下にブレた映像になる場合は、Idelay_dir=0 or 1 を変更してください。

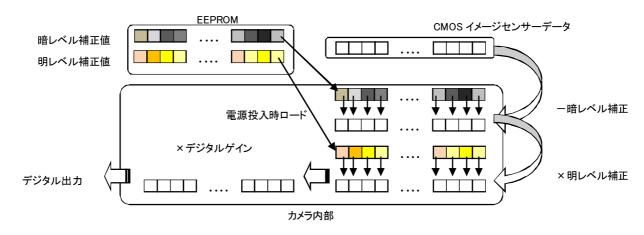

※デュアルラインモードとTDIモードを同時に使用することはできません。

4 デジタル出力データ

4-1 アナログ・デジタルデータ処理部

下図は、TLC-16K5FOL, TL-16K5FOL のアナログおよびデジタル処理の簡易ブロックダイヤグラムです。 アナログ処理部では CMOS センサーの A/D 変換器のゲイン機能 (logr = N)で 0.7~1.0 倍の利得を得ることが可能です。 デジタル処理部はデジタルゲイン・オフセットの他に固定パターンノイズの補正(FPN)、出力不均一性の補正(PRNU)を 含んでいます。これらの設定はすべてカメラ内部で計算され画素毎に実行されます。また暗レベルの目標設定値及び 明レベルの目標設定値はユーザ設定することが可能です。

カメラ出 カ信号フローチャート



FFC : Flat field correction
FPN : Fixed pattern noise

 ${\tt PRNU} \ : {\tt Photo-Response} \ {\tt Non-Uniformity}$

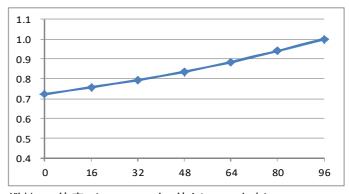
4-1-1 FFC 補正ブロック図

通信コマンド Shade=1 の状態で電源を起動するとカメラは EEPROM から暗・明レベルの補正値をロードします。補正動作はスキャン毎に各画素に実行されます。補正値の取得方法については 4-3 FFC 補正設定の項目をご参照ください。

4-2 ゲインコントロール

4-2-1 ADC ゲインコントロール

A/D 変換器のゲイン機能(logrl=N)によってデジタル信号化の前に利得を得ることが可能です。


logrI=N

〈CR〉 ADC ゲインを設定します。

初期値 = 96 N: 0 ~ 96

設定値とADCゲインの関係は以下のグラフとなります。

logrl	倍率
0	0.7
16	0.8
32	0.8
48	0.8
64	0.9
80	0.9
96	1.0

縦軸 : 倍率 (logrl=96 を1倍としています)

横軸 : 設定値 N

※ゲインが不足する、または、映像出力が飽和しない場合はデジタルゲインをご使用ください。

※ゲインの変更後は、FFC機能を再度行うことを推奨します。

4-2-2 アナログゲインコントロール

again= N 〈CR〉 カメラのアナログゲインを設定します。

初期値 = 0(1.0 倍) N: O: 1.0 倍

※ゲインが不足する場合は、デジタルゲインをご検討ください。

4-2-3 デジタルゲインコントロール

chXgain1=Nコマンドにてデジタルゲインの変更が可能です。

chXgain1=N 〈CR〉 カメラのデジタルゲインを設定します。

ゲイン値 =1+0.0156×N

初期値 = O(1倍) N: O ~ 255 X: 1 ~ 3

例:出力をデジタルゲインで 1.25 倍にする。ch1~ch3 に全て同じパラメータを入力 してください。

TLC-16K5FOL TL-16K5FOL

 ch1 gain1=16 < CR >
 ホライン
 1 番ライン

 ch2 gain1=16 < CR >
 緑ライン
 2 番ライン

 ch3 gain1=16 < CR >
 青ライン
 --

※デジタルゲインの最大倍率は、4.98倍です。

※デジタルゲインと FFC 明レベル補正は同じデジタルゲインを使用します。トータルでの最大倍率は 16 倍です。

4-2-4 ホワイトバランス(TLC-16K5FOL に適用)

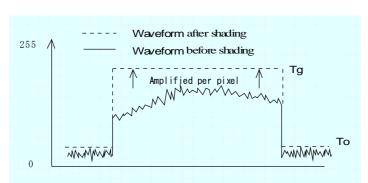
デジタルゲインを使用して、ホワイトバランスを取ることができます。

pwb_set<CR>

RGBの各映像レベルを比較して、一番高い出力レベルに揃えます。

レンズのピントをぼかし無地の白紙を撮像してください。 RGB 各ラインがハレーションを起こしていないか確認してください。 照明は明るさの変動の無い光源をお使いください。

実行後は、ch1gain1、ch2gain1、ch2gain1 の値が変化します。もとに戻す場合は、個別に 0 を設定してください。


被写体が白い場合、通常は緑のレベルが高く、青のレベルが低くなります。周辺減光が大きい場合、一番明るい中央付近の緑と一番暗い左右端の青のレベル差が大きくなりすぎてFFC補正では調整しきれないことがあります。

この様なときは、FFC補正の前にホワイトバランスを使用して各色のレベルを揃えることで、FFC補正を正しく機能させることができます。

4-3 FFC 機能設定

4-3-1 FFC 機能設定手順

レンズ及び素子等に依る波形ムラをフラットに調整する機能です。(本カメラは必ずFFC機能を使用して下さい。) ※FFC補正は電源投入後30分間以上エージングを行ってから実施してください。

Light level (shd-tg) 設定 8bit

Dark level (shd-to) 設定 8bit

注意: FFC 補正手順は必ず「明レベル内部ゲイン値のクリア」「暗レベル補正」「明レベル補正」の順に行ってください。また明レベル補正を再度行う場合でも暗レベル補正値が入力されていることが条件となります。 FFC 補正の補正係数の算出はカメラ内部で複数の画像を必要とします。従って補正の実行は撮像状態で行ってください。外部同期(Ext sync)モードの場合はカメラに SYNC 信号を入れる必要が有ります。

4-3-2 補正前の処理、明レベル内部ゲイン値のクリア

カメラ内部に残っているシェーディングゲイン値を"リセット"します。

※暗レベル補正、明レベル補正中、デジタルゲインは 1 倍で動作します。そのためデジタルゲインを設定していると、補正動作を開始すると同時に映像レベルが変化します。

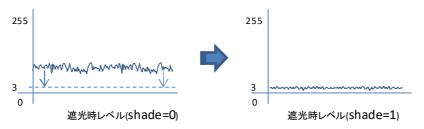
補正動作そのものには影響ありません。補正動作終了後、元のデジタルゲインに戻ります。

shade= 1 〈CR〉 FFC 機能を"ON"します。

shd_clg 〈CR〉 明レベル(各画素の内部ゲイン)のリセット※1

4-3-3 暗レベル補正

暗レベルは光のない状態で補正を行います。またビデオ出力のオフセットも決定されるため、最初に必ず行う 操作になります。設定された目標階調にカメラが補正します。


shd_to= N< CR>暗レベルの目標階調(暗)を設定します。初期値 = 3N: 0 ~ 31

レンズにキャップをします。

shade=6 〈CR〉 暗レベルの補正を開始します。 コマンド受付後"OK"を出力します。

補正実行中は、電源表示灯が赤点灯し、終了後は緑点灯に戻ります。

busy< CR>busy コマンドを入力する事で補正状態の確認が可能です。0待機中4shade=6 実行中

4-3-4 明レベル補正

明レベル補正は各画素に同じ光量を与えた場合に水平な出力を得るために各画素にゲインをかけます。 明レベル補正はビデオ出力を水平にするための目標の値を設定し実行します。したがって各画素に補正ゲイン値を掛けるため目標階調は補正前に比べ高い値にセットしなければなりません。

レンズキャップを外して頂き、ビデオレベルの目標階調(shd_tg=N)を設定します。撮像サンプルは均一な白色板を選び、目標値に対し現在のビデオレベルピークを70%調整してから実行することを推奨します。 (注意: 異物が視野に入っていない状態で行って下さい。)

例:画素のピーク波形 130 階調の時、目標(shd_tg=180).

shd_tg= N 〈CR〉 明レベルの目標階調(明)を設定します。

初期值= 180 N= 32 ~ 255

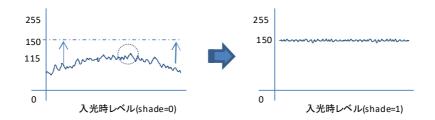
(但し、明レベルは FFC "OFF" 時(暗 FFC 時)のレベルより高く設定して下さい。)

レンズキャップを外します。

shade= 5 〈CR〉 明レベルの補正を開始し各画素にゲイン値が掛かりフラットな ビデオ出力が得られます。

コマンド受付後"OK"を出力します。

補正実行中は、電源表示灯が赤点灯し、終了後は緑点灯に戻ります。


busy 〈CR〉 busyコマンドを入力する事で補正状態の確認が可能です。

0 待機中

8 shade=5 実行中

※明レベル補正の最大倍率は、3.99 倍です。

※デジタルゲインと FFC 明レベル補正は同じデジタルゲインを使用します。トータルでの最大倍率は 16 倍です。

save することによって上記 Shade=6、Shade=5 コマンドで算出された各画素の補正係数は、不揮発性メモリに保存され、電源 off あとも有効に使用できるようになります。

shd_epsv 〈CR〉 FFC補正値が保存されます。

save 〈CR〉 EEPROMにシステム設定(FFC補正値以外)を保存します。

注意:不揮発性メモリは、書き換え回数に制限がありますので、ソフトウェア等によるループ処理を行わない様に注意してください。

<補足>

"again= N"や"logr|=N"でカメラのゲインを変更された場合は再度上記暗レベル補正・明レベル補正を必ず行って下さい。

4-3-5 暗レベル補正、明レベル補正のマスク設定

明レベル補正(shade=5)、暗レベル補正(shade=6)、を実行するときに、補正値を変更しないラインを設定する事ができます。ラインごとに目標レベル(shd_tg、shd_to)を変更することができます。

shd_mask=N 〈CR〉 FFC 補正値を変更しないラインを指定する。

shd_mask=0 〈CR〉 赤、緑、青ラインの補正値を変更する(TLC-16K5FOL)

1番、2番ラインの補正値を変更する(TL-16K5FOL)

	_				_	_	
TΙ	\sim	-1(CV	E	г	ח	
	ι		nΝ	. 1	_	n	

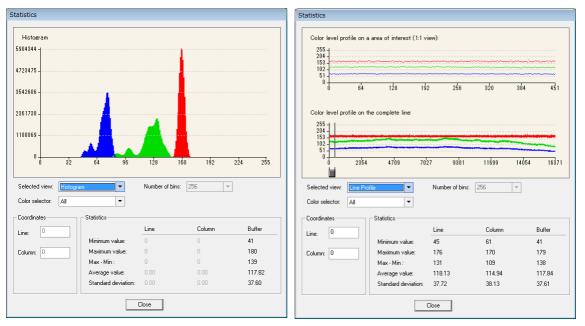
N	bit				ライン	,	
(dec)	[2]	[1]	[0]	青	緑	赤	
7	1	1	1	X	X	X	
6	1	1	0	X	X	0	
5	1	0	1	X	0	X	
4	1	0	0	X	0	0	
3	0	1	1	0	X	X	
2	0	1	0	0	X	0	
1	0	0	1	0	0	X	
0	0	0	0	0	0	0	初期値

	L	_	l	6	ĸ	ხ	H	В	L
_									

N	bit		bit ライン		
(dec)	[1]	[0]	1	0	
3	1	1	X	X	
2	1	0	X	0	
1	0	1	0	X	
0	0	0	0	0	初期値

※変更しないライン=×、変更するライン=O

使用例(赤ライン, 1番ラインを明レベル 160 に揃える)。


レンズにキャップをします。

shade=6	<cr></cr>	暗レベルの補正を開始します。 全ラインの暗レベル補正値を決定。
shd_mask=6	<cr></cr>	緑、青ラインにマスク設定(TLC-16K5FOL)
shd_mask=2	<cr></cr>	2番ラインにマスク設定(TL-16K5FOL)
shd tg=160	<cr></cr>	明レベルの目標階調(明)を設定します。

レンズキャップを外します。

shade= 5 〈CR〉 赤ラインの明レベルの補正(TLC-16K5FOL)
1番ラインの明レベルの補正(TL-16K5FOL)を開始します。
赤ライン、1番ラインの補正を決定。

実行後のヒストグラムとラインプロット例(TLC-16K5FOL)。

4-3-6 FFC 補正の補正係数の確認

以下の設定を行うとカメラリンク経由のビデオ出力として各ピクセルのデータが出力されます。

●FFC 補正 シェーディングゲイン値の確認

shd_go=1〈CR〉シェーディングゲイン設定を選択します。(明レベル係数)shade=2〈CR〉FFC 補正データ出力状態。shd_ul=N〈CR〉上位 bit 下位 bit の切替え N: 0(上位 8bit) or 1(下位 4bit).ゲイン値がビデオ出力として得られます。

●FFC 補正 OFFSET値の確認

shd_go=2 〈CR〉 シェーディングオフセット設定を選択します。(暗レベル係数) shade=2 〈CR〉 FFC 補正データ出力。
shd_ul=N 〈CR〉 上位 bit 下位 bit の切替え N: 0(上位 8bit) or 1(下位 4bit).
オフセット値がビデオ出力として得られます。

※補正係数の確認モード shade=2 の状態では、shade=6 や shade=5 は正常に動作しません。 shade=1 または shade=0 を入力して shade=2 を解除してから行ってください。

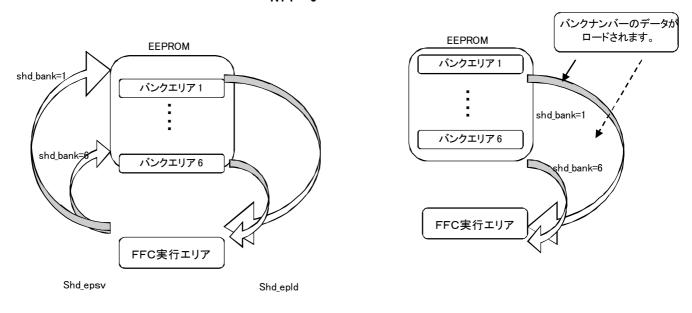
4-4 設定値のセーブとロード

次の2種類のコマンドを使用して、EEPROM(不揮発性メモリ)へユーザー設定を保存ことができます。 現在のカメラ動作にかかわるセッティング・パラメータはすべて save コマンドを使用します。 また FFC 補正で得られた各画素の補正係は shd_epsvコマンドを使用します。 これらのコマンド実行後、カメラ電源投入時、カメラはユーザー設定で自動的に起動します。

4-4-1 FFC補正係数を保存

shd_epsv 〈CR〉 FFC補正値が EEPROM のバンクナンバーN(shd_bank=N)の エリアへ保存されます。

"OK"が表示されたら EPROM に保存完了となります。


4-4-2 FFC補正係数を読出し

shd_epId 〈CR〉 FFC補正値をバンクナンバーN(shd_bank=N)のエリアからロードします。

注意:電源投入時の FFC 補正は shd_epld が実行されます。

4-4-3 FFC補正係数を読出しバンクの指定

shd_bank=N <CR> FFC補正値を読み込むエリアを設定します。 N:1~6

FFC 補正セーブとロード

電源投入時

4-4-3 システムの保存

shade= 1 〈CR〉 FFC機能を"ON"します。

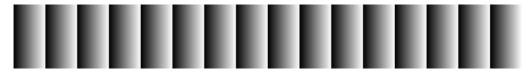
save 〈CR〉 EEPROMにシステム設定(FFC補正値以外)を保存します。

"OK"が表示されたら保存完了となります。

注意: save、shd_epsvコマンド実行中は、カメラの電源を落とさないでください。正常にデータが保存されない、また故障の原因になります。

注意:不揮発性メモリは、書き換え回数に制限がありますので、ソフトウェア等によるループ処理を行わない様に注意してください。

4-5 テストパターンの出力

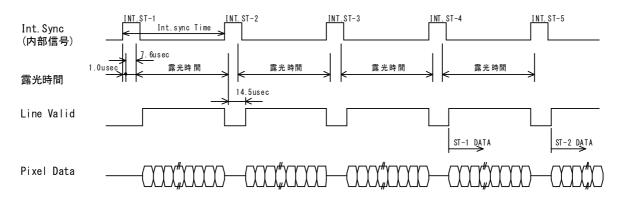

画像キャプチャーボードに接続する際、テストパターン表示機能を用いる事によりカメラの出力タイミングや 信号接続内容がキャプチャーボード側と正しくマッチしているかどうかを確認することができます。 テストパターン機能をONとすると撮像素子からの映像出力の代わりに下記に示す様な画像が出力されます。

- ※外部同期(Ext Sync)で使用する場合は、外部の Sync 信号をカメラに入力する必要があります。
- ※TL-16K5FOL で TDI=1(ON)の場合、出力前に 2 ラインの加算が行われるため、O階調から2階調ずつ上がり最大階調に達すると 0 階調に戻るパターンになります。

4-5-1 テストパターン1

O階調から1画素単位で1階調ずつ上がります。最大階調に達すると0階調に戻ります。 これを繰り返します。

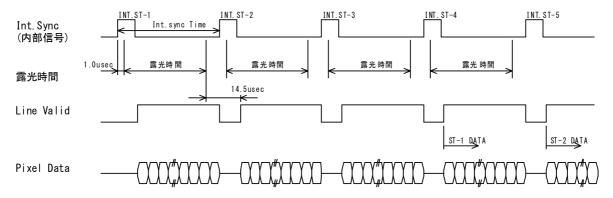
testp=1 〈CR〉 〈- テストパターン1を出力する。


4-5-2 テストパターン2

O階調から1ライン単位で1階調ずつ上がります。最大階調に達すると0階調に戻ります。 これを繰り返します。

testp=2 〈CR〉 〈- テストパターン 2 を出力する。

4-6 デジタル出力タイミング


•TLC-16K5FOL

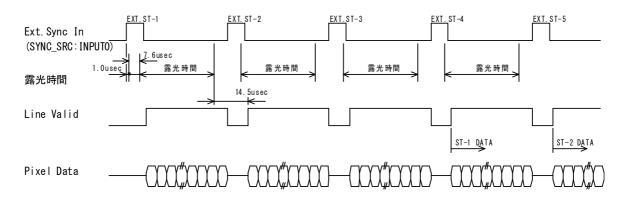
●内部同期(sync=2)

固定露光(expc=1) Int. SyncのUpエッジから下式の時間露光します。

固定露光時間 = (exptw + 1) x 0.025 単位: μ sec 最短露光時間 = 35.4 単位: μ sec Int. Sync Time = (cyctw + 1) x 0.025 単位: μ sec 固定露光におけるInt. Sync Timeの最短周期は44.1 μ secです。

※露光時間が優先されます

露光時間がど周期時間内に収まらない場合、

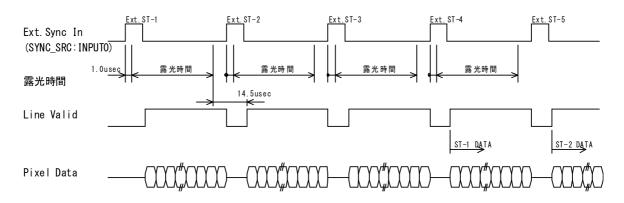

周期時間はInt. Sync Timeの2倍、3倍・・と長くなります。

※カラーギャップ補正による遅延は含まれていません。

●外部同期(sync=1)

ライン露光(expc=0)

Ext Sync In(SYNC_SRC:INPUTO)の周期時間露光します。 露光時間 = 周期時間 - 8.7 単位: μ sec ライン露光におけるExt.Syncの最短周期は44.1 μ secです。

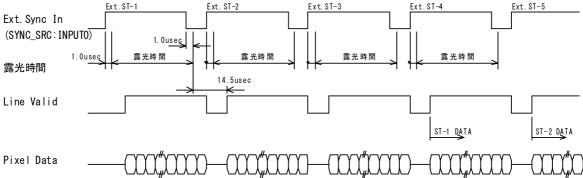


●外部同期(sync=1)

固定露光(expc=1)

Ext Sync In(SYNC_SRC:INPUTO)の有効エッジから下式の時間露光します。 固定露光時間 = (exptw + 1) x 0.025 単位: μ sec

固定露光におけるExt. Sync の最短周期は 44.1μ secです。

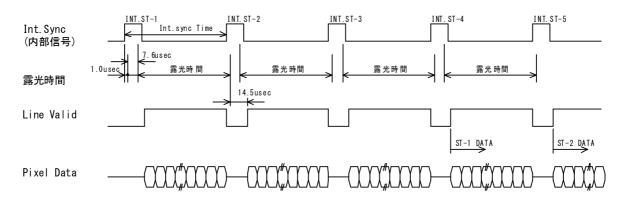


●外部同期(sync=1)

パルス幅露光(expc=2) Ext Sync In(SYNC_SRC:INPUTO)のパルス幅時間露光します。

最低露光時間 = 35.4 単位: μ sec

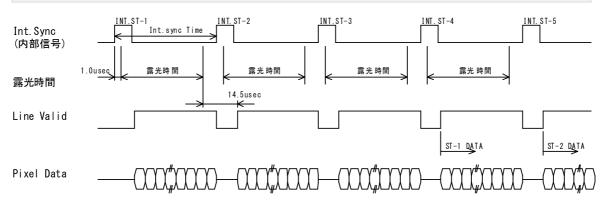
パルス幅露光におけるExt. Syncの最短周期は44. 1 μ secです。


%Ext_Sync_IN(SYNC_SRC: INPUT0) は、H レベルおよび L レベルを3. 2 μ 秒以上の時間維持してください。%カラーギャップ補正による遅延は含まれていません。

·TL-16K5FOL

シングルラインモード

●内部同期(sync=2)

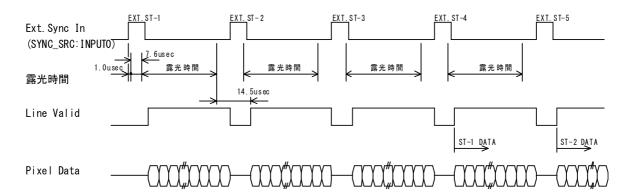

ライン露光(expc=0) Int Sync Time = (cyctw + 1) x 0.025 単位: μ sec 最短周期 = 25.7 単位: μ sec 露光時間 = (cyctw + 1 - 345) x 0.025 単位: μ sec

●内部同期(sync=2)

固定露光(expc=1) Int. SyncのUpエッジから下式の時間露光します。

| 固定露光時間 = (exptw + 1) x 0.025 | 単位: μ sec 最短露光時間 = 17.0 | 単位: μ sec 目nt. Sync Time = (cyctw + 1) x 0.025 | 単位: μ sec 固定露光におけるInt. Sync Timeの最短周期は25.7μ secです。

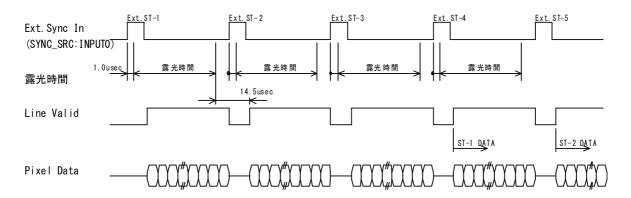
※露光時間が優先されます


露光時間がど周期時間内に収まらない場合、

周期時間はInt. Sync Timeの2倍、3倍・・と長くなります。

●外部同期(sync=1)

ライン露光 (expc=0)


Ext Sync In(SYNC_SRC:INPUTO)の周期時間露光します。 露光時間 = 周期時間 - 8.7 単位: μ sec ライン露光におけるExt.Syncの最短周期は25.7 μ secです。

●外部同期(sync=1)

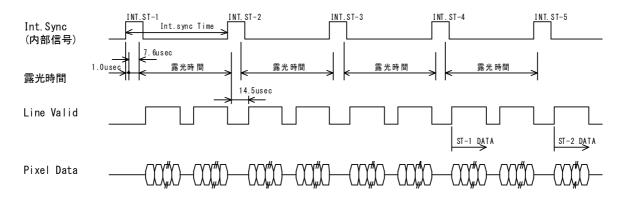
固定露光(expc=1)


Ext Sync In(SYNC_SRC:INPUTO)の有効エッジから下式の時間露光します。 固定露光時間 = (exptw + 1) x 0.025 単位: μ sec 最短露光時間 = 17.0 単位: μ sec 固定露光におけるExt. Sync の最短周期は25.7 μ secです。

●外部同期(sync=1)

パルス幅露光(expc=2)

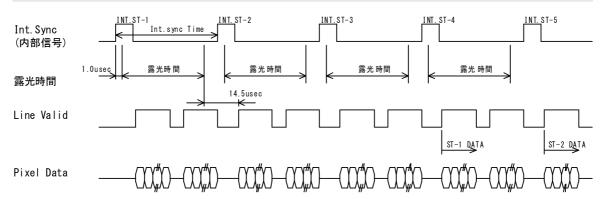
Ext Sync In(SYNC_SRC:INPUTO)のパルス幅時間露光します。 最低露光時間 = 17.0 単位:μ sec パルス幅露光におけるExt.Syncの最短周期は25.7μ secです。


※Ext_Sync_IN (SYNC_SRC: INPUTO)は、HレベルおよびLレベルを3.2μ秒以上の時間維持してください。

·TL-16K5FOL

<u>デュアルラインモード</u>

●内部同期(sync=2)


ライン露光(expc=0) Int Sync Time = (cyctw + 1) x 0.025 単位: μ sec 最短周期 = 29.5 単位: μ sec 露光時間 = (cyctw + 1 - 345) x 0.025 単位: μ sec

●内部同期(sync=2)

固定露光(expc=1) Int. SyncのUpエッジから下式の時間露光します。

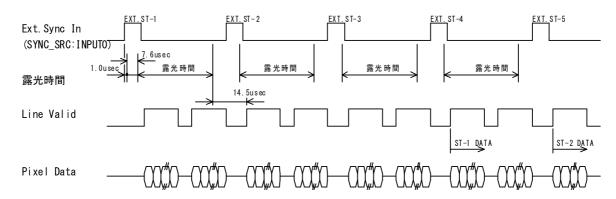
固定露光時間 = (exptw + 1) x 0.025 単位: μ sec 最短露光時間 = 20.8 単位: μ sec Int. Sync Time = (cyctw + 1) x 0.025 単位: μ sec 固定露光におけるInt. Sync Timeの最短周期は29.5 μ secです。

※露光時間が優先されます

露光時間がど周期時間内に収まらない場合、

周期時間はInt. Sync Timeの2倍、3倍・・と長くなります。

※ギャップ補正による遅延は含まれていません。

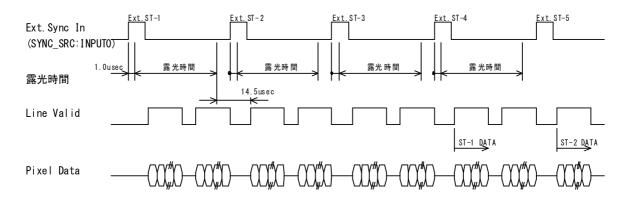

●外部同期(sync=1)

ライン露光(expc=0)

Ext Sync In(SYNC_SRC: INPUTO)の周期時間露光します。

露光時間 = 周期時間 - 8.7 単位: μ sec

ライン露光におけるExt. Syncの最短周期は29.5 μ secです。


●外部同期(sync=1)

固定露光(expc=1)

Ext Sync In(SYNC_SRC: INPUTO)の有効エッジから下式の時間露光します。

固定露光時間 = $(\exp tw + 1) \times 0.025$ 単位: $\mu \sec$ 最短露光時間 = 20.8 単位: $\mu \sec$

固定露光におけるExt. Sync の最短周期は29.5μ secです。

●外部同期(sync=1)

パルス幅露光(expc=2) Ext Sync In(SYNC_SRC:INPUTO)のパルス幅時間露光します。

最低露光時間 = 20.8 単位: μ sec パルス幅露光におけるExt. Syncの最短周期は29.5 μ secです。

Ext. Sync In (SYNC_SRC: INPUTO)

1. Ousec 露光時間

14. Susec

Line Valid

Pixel Data

%Ext_Sync_IN (SYNC_SRC: INPUT0) は、H レベルおよびL レベルを3.2 μ 秒以上の時間維持してください。 ※ギャップ補正による遅延は含まれていません。

5 通信コマンド一覧

TAKEX 製ラインスキャンカメラはカメラリンク経由のシリアル通信により各動作のコントロールをすることが可能です。・カメラの動作設定・ゲイン値の調整・FFC 補正の実行・テストパターンの出力 これらはシリアル通信を介し行います。シリアル通信インターフェースは ASCII に基づいたプロトコルを使用します。

	機能名称	コマンド	送信パラメータ	カメラ返信 パラメー	対備考
		sync=N <cr></cr>	N=0:無効	OK	外部同期(Ext Sync)と内部同期(Int Sync)の
			N=1:外部同期(Ext Sync)		切替えを行います。初期値 N=2
	カメラ動作モード設定		N=2:内部同期(Int Sync)		N=1:外部同期(Ext Sync)で使用する場合、
					sync_srcで指定する入力ポートに信号を入力
		sync[?] <cr></cr>	None	N=1-2	する必要があります。
		expc=N <cr></cr>	N=0:ライン露光	OK	N=0:ライン露光の露光時間はSync信号の間隔
			N=1:一定露光		で決まります。
	露光モード設定		N=2: パルス幅露光		N=1:一定露光の露光時間はexptの設定値
		expc[?] <cr></cr>	None	0~2	で決まります。
		exptn=N <cr></cr>			一定露光時間 = exptn (単位:nsec)
	ウ電火は明るまで		N=42475-1638400 (TLC)	OK	※exptwで設定可能な範囲に丸められます。
	一定露光時間の設定 (nS単位)		N=18175-1638400 (TL)		
	(1041)	exptn[?] <cr></cr>	None	N=42475-1638400	
				N=25700-1638400	このパラメータはexpc=1の時有効となります。
		exptw=N <cr></cr>	N=0,1698-65535 (TLC)	OK	一定露光時間 = (exptw + 1) * 0.025 (単位: μ sec)
	中電火は即の乳中		N=0,727-65535 (TL)		※N=0は、N=1698(TLC-16K5FBL)と同じです。
	一定露光時間の設定 (word単位)				※N=0は、N=727(TL-16K5FBL)と同じです。
	(++ 5) Q-1- (±/-)	exptw[?] <cr></cr>	None	N=1698-65535	
				N=727-65535	このパラメータはexpc=1の時有効となります。
		expt=N <cr></cr>	N=0-255:Exposure time	OK	一定露光時間 = (expt *256 + explt +1) * 0.025
	一定露光時間の設定	explt=N <cr></cr>			単位: μ sec
	(byte単位)	expt[?] <cr></cr>	None	N=0-255	
		explt[?] <cr></cr>			このパラメータはexpc=1の時有効となります。
		cyctn=N <cr></cr>	N=0,56325-1638400 (TLC)	ОК	動作周期 = cyctn (単位: nsec)
1	 動作周期の設定		N=0,25700-1638400 (TL)		※cyctwで設定可能な範囲に丸められます。
	動作局期の設定 (nS単位)				
1	(115 4 12)	cyctn[?] <cr></cr>	None	N=56325-1638400	
山山				N=25700-1638400	このパラメータはsync=2の時有効となります。
カメラ 動作コントロ-		cyctw=N <cr></cr>	N=0,2252-65535 (TLC)	OK	動作周期 = (cyctw + 1) * 0.025
Ž,	動作周期の設定		N=0,1027-65535 (TL)		単位: μ sec
Τ.	(word単位)				■ ※N=0は、N=2252(TLC-16K5FBL)と同じです。
		cyctw[?] <cr></cr>	None	N=2252-65535	※N=0は、N=1027(TL-16K5FBL)と同じです。
				N=1027-65535	このパラメータはsync=2の時有効となります。
		cyct=N <cr></cr>	N=0-255: cyclic time		このパラメータはsync=2の時有効となります。
	動作周期の設定	cyclt=N <cr></cr>			
	(byte単位)	cyct[?] <cr></cr>	None	N=0-255	動作周期時間=(cyct*256 + cyclt +1)*0.025
		cyclt[?] <cr></cr>		014	単位: μ sec
		again=N <cr></cr>	N:0	OK	アナログゲインの設定 (初期値 N=0)
	アナログゲイン				0に固定されています。
		again[?] <cr></cr>	None	N=0	┥
		logrl=N <cr></cr>	N:0-96	OK	ADCゲインの設定 (初期値 N=96)
	ADCゲインの設定	IOSII-IN COIL/	11.0 00		, 50 / 10 0/00 (
	, , , , , , , , , , , , , , , , , , ,	logrl[?] <cr></cr>	None	N=0-96	1
	暗レベルの設定	offset=N <cr></cr>	N:0-255	OK	■
	(オフセット)			[]	中央値=128。小さくするとレベルが下がり、大きくする
	,	offset[?] <cr></cr>	None	N=0-255	■ 十人間 120° いたくすること いんが 1 がり、人どくする とレベルが上がります。
	水平反転出力	reversex=N <cr></cr>	N:0-1	OK	水平反転出力の設定
					N=0:通常出力 (初期値)
1	1	reversex[?] <cr></cr>	None	N=0-1	■ N=1:逆順出力
				ок	テストパターンの設定
		testp=N <cr></cr>	N:0-2	UK	ハドハラーンの設定
		testp=N <cr></cr>	N:0-2	OK .	0:OFF (初期値)
	テストパターンの設定	testp=N <cr></cr>	N:0-2	OK	
	テストパターンの設定	testp=N <cr></cr>	N:0-2	OK .	0:OFF (初期値)

[※]一定露光の設定 nsec word byte 単位はカメラ内部で共通のレジスタを使用しています。

[※]動作周期の設定 nsec word byte 単位はカメラ内部で共通のレジスタを使用しています。

TLx-16K5FOL User Manual

	機能名称	コマンド	送信パラメータ	カメラ返信パラメータ	備考
	FFC補正動作	shade=N <cr></cr>	0:OFF	OK	Shade control mode
	コマンド		1:ON		value reference/setting
			2:Data out		(Note.4)
			5:Auto shade for gain		0:FFC補正が無効になります。
			6:Auto shade for offset		1:FFC補正が有効になります。
			7:ON(offset only)		2:FFC補正で得た係数をビデオ出力します。
					5:明レベル補正値の更新
					6:暗レベル補正値の更新
		shade[?] <cr></cr>	None	N=0-1,7	7:ON (offset only)
	FFC補正動作	shd_mask=N <cr></cr>	N=0-7(TLC-16K5FBL)	OK	shdde=5,6実行時に補正値を変更しないラインを
	マスク		N=0-3(TL-16K5FBL)		指定できます
					詳細は本文の説明を参照してください。
		shd_mask[?] <cr></cr>	None	N=0-7	
	FFC補正値の選択	shd_go=N <cr></cr>	N=0:OFF	OK	FFC補正の指数を出力する場合(shade=2)の
	(明レベル/暗レベル)		N=1:明レベル補正値を選択		補正値の切り替え
			N=2:暗レベル補正値を選択		
		shd_go[?] <cr></cr>	None	N=0-2	1
	FFC補正値の選択	shd_ul=N <cr></cr>	N=0-1	OK	FFC補正の指数を出力する場合(shade=2)の
	(上位/下位)				上位・下位の切り替え
					0:FFC補正指数上位 8bit
		shd_ul[?] <cr></cr>	None	N=0-1	1FFC補正指数下位 4bit
د	明レベル補正	shd_tg=N <cr></cr>	N=32-255	OK	明レベル補正のための目標値 (初期値=180)
Ī	目標値の設定				
ᅷ		shd_tg[?] <cr></cr>	None	N=32-255	1
FC権正コントロール					
벌	暗レベル補正	shd_to=N <cr></cr>	N=0-31	OK	暗レベル補正のための目標値 (初期値=3)
<u>ځ</u>	目標値の設定				
ΪĒ		shd_to[?] <cr></cr>	None	N=0-31	
	FFC補正値のクリア	shd_clg <cr></cr>	None	OK	明レベル補正値をクリアします。
	(明レベル)				
	FFC補正値のクリア	shd_clo <cr></cr>	None	OK	暗レベル補正値をクリアします。
	(暗レベル)				
	FFC補正値	shd_bank=N <cr></cr>	N:1-6	OK	FFC補正値をLoad/Saveするバンクを指定します。
	保存エリア	shd_bank[?] <cr></cr>	None	N=1-6	
	FFC補正指数のロード	shd_epId <cr></cr>	None	OK	shd_bankで指定したエリアから
					FFC補正指数をロードします。
	FFC補正指数のロード	shd_epId2 <cr></cr>	None	OK	初期値保存用のエリアに
					FFC補正指数をロードします。
	FFC補正指数のセーブ	shd_epsv <cr></cr>	None	OK	shd_bankで指定したエリアから
					FFC補正指数をセーブします。
	FFC補正指数のセーブ	shd_epsv2 <cr></cr>	None	OK	初期値保存用のエリアに
					FFC補正指数をセーブします。
		busy[?] <cr></cr>	None	N=0:待機中	FFCなど時間の必要な処理を行うときに
				N=1:FFCロード中	動作状態を確認できます。
	動作状態の確認			N=2:FFCセーブ中	
	30 IF1へ心 V/唯祕			N=4:shade=6実行中	
				N=8:shade=5実行中	
		1		N=他:起動中	

- ※明レベルの補正(shade=5)、暗レベルの補正(shade=6)、FFC ロード(shd_epld,shd_epld2)、および、FFC セーブ(shd_epse,shd_epsv2)は、処理に時間がかかります。コマンドが重複すると正常に動作しませんので、busy コマンドを使用して、先のコマンドの完了を確認してから次のコマンドを入力してください。
- ※明レベルの補正(shade=5)、暗レベルの補正(shade=6)は複数の映像信号を使用して演算しますので、 カメラを撮像状態にする必要があります。

FFC 補正値のクリアは(shd_clg , shd_clo)は、カメラの動作に合わせてクリアしますので、カメラを撮像状態にする必要があります。

TLx-16K5FOL User Manual

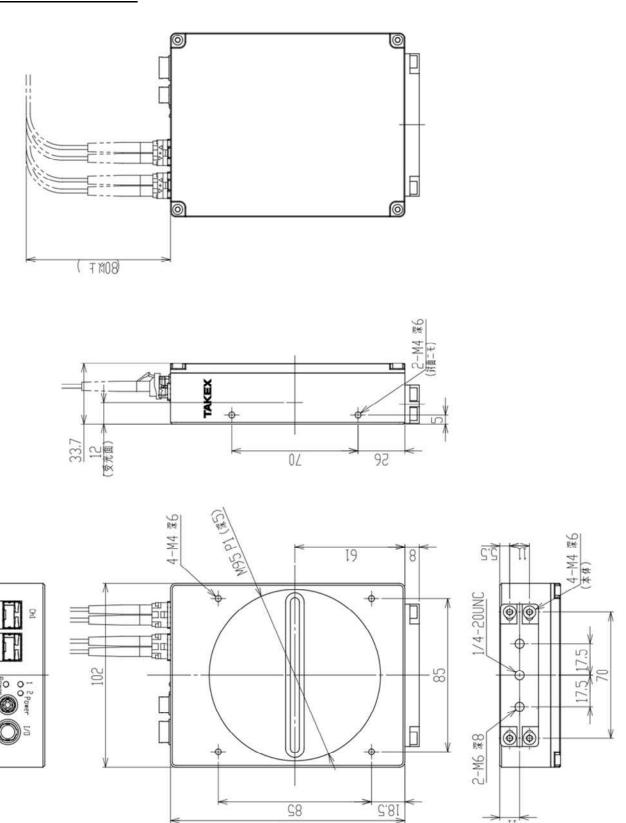
	機能名称	コマンド	送信パラメータ	カメラ返信パラメ	一タ備考
	Sync信号入力Port	sync_src=N <cr></cr>	N=01NPUT0	OK	Sync入力Portの切り替え
			N=1:INPUT1		初期値 N=0
			N=2:INPUT2		
			N=3:Opt-C_CC1		
		sync_src[?] <cr></cr>	None	N=0-3	
	Sync1信号入力Port	sync1_src=N <cr></cr>	N=01NPUT0	OK	Sync1入力Portの切り替え
			N=1:INPUT1		初期値 N=2
			N=2:INPUT2		※enc_mode=1 or2 の場合Sync1入力が必要になりま
			N=3:not use		す。
		syncb_src[?] <cr></cr>	None	N=0-2	
	Sync信号エッジ	sync_act=N <cr></cr>	N=0:立ち上がりエッジ		Sync信号の動作エッジを設定します。(初期値 N=0)
			N=1:立ち下がりエッジ		
			N=2:両エッジ		
		sync_act[?] <cr></cr>	None	N=0-2	
	Sync間引き	sync_div=N <cr></cr>	N=0-15	OK	Sync信号に対して間引き動作します。(初期値 N=0)
		sync_div[?] <cr></cr>	None	N=0-15	N=0:間引きなし、N=1:1/2回、N=2:1/3回。。
	Sync発行	sync_on	None	OK	コマンドでSync信号を発行します
	エンコーダモード	enc_mode=N <cr></cr>	N=0-2	OK	エンコーダ使用の有無、パルス/カウントモード
			N=0:エンコーダを使用しない		を指定します。
			N=1:エンコーダ(パルスモード)		初期值 N=0
			N=2:エンコーダ(カウントモード)		
α		enc_mode[?] <cr></cr>		N=0-2	sync=1の時有効となります。
÷	エンコーダ回転方向	enc_dir=N <cr></cr>	N=0-1	OK	エンコーダの回転方向を指定します。
┧			N=0:時計回り		指定の方向に回転した場合に、映像出力します。
大			N=1:反時計回り		初期値 N=0
カメラ動作コントロール		enc_dir[?] <cr></cr>		N=0-1	enc_mode=0以外の時に有効となります。
重	カメラ動作モード設定2	trig=N <cr></cr>	N=0-1		外部同期(Ext Trig)と内部同期(Int Trig)の
Ž,			N=0:12pin 外部入力無効		切替えを行います。(初期値 N=0)
R			N=1:12pin 外部入力有効		N=1:外部同期(Ext Trig)で使用する場合、
					Trig_srcで指定する入力ポートに信号を入力する
					必要があります。
		trig[?] <cr></cr>	None	N=0-1	
	Trig信号入力Port	trig_src=N <cr></cr>	N=01NPUT0	OK	Trig入力Portの切り替え
			N=1:INPUT1		初期値 N=1
			N=21NPUT2		
			N=3:Opt-C_CC1		
		trig_src[?] <cr></cr>	None	N=0-3	
	Trig信号エッジ	trig_act=N <cr></cr>	N=0:立ち上がりエッジ		Trig信号の動作エッジを設定します。
			N=1:立ち下がりエッジ		(初期値 N=0)
			N=2:両エッジ		
		tirg_act[?] <cr></cr>	None	N=0-2	
	Trig発行	trig_on	None	OK	コマンドでTrig信号を発行します
	LI #8	fcn=N <cr></cr>	N=0-255 :		外部同期(Ext Trig)モードの場合の出力するライン数を
	外部Trigモード のフレーム数	fcln=N <cr></cr>			設定します。初期値 fcn=0x10,fcln=0x00
	のフレーム剱 (byte単位)	fcn[?] <cr></cr>	None	N=0-255	ライン数=fcn*256+fcIn
	(=, so + p=/	fcln[?] <cr></cr>			最小=1, 最大=60000
		fcnw=N <cr></cr>	N=1-60000	ОК	外部同期(Ext Trig)モードの場合の出力するライン数を
	外部Trigモード				設定します。 初期値 fcnw=4096
	のフレーム数 (word単位)				ライン数=fcnw
	(WOIUFIL)	fcnw[?] <cr></cr>		N=1-60000	

TLx-16K5FOL User Manual

	機能名称	コマンド	送信パラメータ	カメラ返信パラメ	一タ備考
	IO	ioterm	N=00,01,10,11,30,31,	ОК	IO[4:0]の終端抵抗の有効/無効を切り替えます。
	終端抵抗の設定				初期値 N=00000
					入力ポートはIO[3],[1],[0]です。
					InPort[0]=IO[0] , InPort[1]=IO[1] , InPort[2]=IO[3]
					例1. N=11, IO[1]=終端抵抗有効
					例2. N=30, IO[3]=終端抵抗無効
					入力ポートの場合のみ有効です。
		ioterm[?] <cr></cr>	None	N=00000	Nの最上位がIO[4]を最下位がIO[0]の終端抵抗の有効/無効を示します。差動信号を入力するときは、有効に設定してください。
7-0					1=有効,0=無効
그	出力ポート0の設定	outp0=N <cr></cr>	N=0-3	OK	OutPort0(IO[2])の設定
GPIOコント	(IO[2])				N=0:Low レベル(0V) (初期値)
50					N=1:High レベル (3.3V)
ਲ					N=2:露光タイミング信号(High Active)
					N=3:露光タイミング信号(Low Active)
		outp0[?] <cr></cr>	None	N=0-5	
	出力ポート0の設定	outp1=N <cr></cr>	N=0-3	ок	OutPort1(IO[4])の設定 (初期値=0)
	(IO[4])				N=0:Low レベル(0V)
					N=1:High レベル (3.3V)
					N=2:露光タイミング信号(High Active)
					N=3:露光タイミング信号 (Low Active)
		outp1[?] <cr></cr>	None	N=0-5	
	カメラIDの設定	id=N <cr></cr>	N:0~255	ОК	カメラのIDを保存することができます。
	*1	id[?] <cr></cr>	None	ID(Default:0)	 複数のカメラを使用する場合に使用します。
	Check	check <cr></cr>	None	ОК	シリアル通信確認用コマンド
	Save	save <cr></cr>	None	ОК	設定値をEEPROMにセーブします。
1	Load	load <cr></cr>	None	ОК	設定値をEEPROMからロードします。
ロンド	カメラのバージョン情報	ver <cr></cr>	None	Version	CPUのバージョン情報です。
テムコ	カメラの型式情報	model <cr></cr>	None	Model	カメラの型式情報です。
K	カメラの空 式情報	model\GR/	Ivone	Модел	ガメブの空式情報です。
カメラシ	FPGAのバージョン情報	rev <cr></cr>	None	Revision	FPGAのバージョン情報です。
``	出荷状態への復帰	init <cr></cr>	None	ОК	工場出荷時に戻します。(FFC補正は反映されません)
					初期化Pageを読み出す。
	カメラの状態レポート	cfg <cr></cr>	None	(Data output)	カメラ内部設定を得ることができます。
	I				

	機能名称	コマンド	送信パラメータ	カメラ返信パラメ-	- ダ備考
	カラーギャップ補正	rgb_on=N <cr></cr>	N=0:OFF	ОК	カラーギャップ補正の設定
	の設定	. 557 (0.5)	N=1:ON		N=0:補正off (初期値)
		rgb_on[?] <cr></cr>	None	0:OFF 1:ON	N=1:補正on
	 カラー ギャップ 補正	rgb_dir=N <cr></cr>	N=0:RGB	OK	カラーギャップ補正の方向
	の方向		N=1 : B GR		N=0:Rラインの遅延=0、G=LDELAY、B=LD2 (初期値)
		1 " [6] (0 D)		0.000	N=1:Bラインの遅延=0、G=LDELAY、R=LD2
		rgb_dir[?] <cr></cr>	None	0:RGB 1:BGR	
	カラーギャップ補正値	rgb_ldelay=N <cr></cr>	N:0-5	OK	カラーギャップ補正値の設定(Gライン)(初期値=2)
	(LDELAY)				N=遅延ライン数(0-5)
7		rgb_ldelay[?] <cr></cr>	None	0-5	
T.C-16K5FOL用コマンド	カラーギャップ補正値 (LD2)	rgb_ld2=N <cr></cr>	N:0-5	OK	カラーギャップ補正値の設定(RorBライン) (初期値=4)
OLF		rgb_ld2[?] <cr></cr>	None	N=0-5	N=遅延ライン数(0-5)
6K5F	ホワイトバランス	pwb_set <cr></cr>	None	ОК	ワンプッシュホワイトバランス デジタルゲインを使用してRGBのレベルを揃える
9) フタルワインを使用してRGBのレベルを揃える
F	+= A	ch1gain1=N <cr></cr>	N=0-255: gain level	OK	赤ライン: デジタルゲインの設定(初期値 N=0)
	赤ライン デジタルゲイン値				1step=0.016(1/64)
	の設定	ch1gain1[?] <cr></cr>	None	N=0-255	min=1倍(0) max=4.98倍
	緑ライン	ch2gain1=N <cr></cr>	N=0-255: gain level	ОК	緑ライン: デジタルゲインの設定(初期値 N=0)
	デジタルゲイン値	ch2gain1[?] <cr></cr>	None	N=0-255	1step=0.016(1/64) min=1倍(0) max=4.98倍
	の設定	cnzgain1[?]CR2	None	N-0-255	min-11合(U) max-4.96 信
	青ライン	ch3gain1=N <cr></cr>	N=0-255: gain level	OK	青ライン: デジタルゲインの設定(初期値 N=0)
	デジタルゲイン値	ch3gain1[?] <cr></cr>	None	N=0-255	1step=0.016(1/64) min=1倍(0) max=4.98倍
	の設定	choganii[:]\Oit>	None	14-0 233	11111-1 (a) 111ax-4.30 (a
	機能名称		* # .0 = .1 h	1. 1 - 1 - 1 - 1 - 1	J # #
		コマンド	送信パラメータ	カメラ返信 パラメー	
	ギャップ補正の設定	Idelay_on=N <cr></cr>	N=0:OFF	ファフ返信ハファー OK	ギャップ補正の設定
		Idelay_on=N <cr></cr>	N=0: OFF N=1: ON	ОК	ギャップ補正の設定 N=0:補正off (初期値)
			N=0:OFF		ギャップ補正の設定
		Idelay_on=N <cr></cr>	N=0: OFF N=1: ON	OK 0:OFF	ギャップ補正の設定 N=0:補正off (初期値)
	ギャップ補正の設定	Idelay_on=N <cr> Idelay_on[?]<cr></cr></cr>	N=0:OFF N=1:ON None	OK 0:OFF 1:ON	ギャップ補正の設定 N=0:補正off (初期値) N=1:補正on ギャップ補正の方向 N=0:1番ラインの遅延=O、2番=LDELAY (初期値)
	ギャップ補正の設定	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr></cr></cr></cr>	N=0: OFF N=1: ON None N=0: 1-2番ライン N=1: 2-1番ライン	OK 0:OFF 1:ON OK	ギャップ補正の設定 N=0:補正off (初期値) N=1:補正on ギャップ補正の方向
	ギャップ補正の設定	Idelay_on=N <cr> Idelay_on[?]<cr></cr></cr>	N=0: OFF N=1: ON None N=0: 1-2番ライン	OK 0:OFF 1:ON OK 0:1-2番ライン	ギャップ補正の設定 N=0:補正off (初期値) N=1:補正on ギャップ補正の方向 N=0:1番ラインの遅延=O、2番=LDELAY (初期値)
	ギャップ補正の設定	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr></cr></cr></cr>	N=0: OFF N=1: ON None N=0: 1-2番ライン N=1: 2-1番ライン	OK 0:OFF 1:ON OK	ギャップ補正の設定 N=0:補正off (初期値) N=1:補正on ギャップ補正の方向 N=0:1番ラインの遅延=O、2番=LDELAY (初期値)
	ギャップ補正の設定ギャップ補正の方向	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None	OK 0:OFF 1:ON OK 0:1-2番ライン 1:2-1番ライン OK	ギャップ補正の設定 N=0:補正off (初期値) N=1:補正on ギャップ補正の方向 N=0:1番ラインの遅延=0、2番=LDELAY (初期値) N=1:2番ラインの遅延=0、1番=LDELAY
7.7	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY)	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> Idelay=N<cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5	OK 0: OFF 1: ON OK 0: 1-2番ライン 1:2-1番ライン OK 0-5	 ギャップ補正の設定 N=0:補正のff (初期値) N=1:補正の方向 N=0:1番ラインの遅延=0、2番=LDELAY (初期値) N=1:2番ラインの遅延=0、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5)
用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None	OK 0:OFF 1:ON OK 0:1-2番ライン 1:2-1番ライン OK	 ギャップ補正の設定 N=0:補正off (初期値) N=1:補正on ギャップ補正の方向 N=0:1番ラインの遅延=0、2番=LDELAY (初期値) N=1:2番ラインの遅延=0、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1)
-OL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY)	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> Idelay=N<cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5	OK 0: OFF 1: ON OK 0: 1-2番ライン 1:2-1番ライン OK 0-5	 ギャップ補正の設定 N=0:補正のff (初期値) N=1:補正の方向 ボャップ補正の方向 N=0:1番ラインの遅延=0、2番=LDELAY (初期値) N=1:2番ラインの遅延=0、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効)
16K5FOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン)	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> Idelay[?]<cr> tdi</cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1	OK 0: OFF 1: ON OK 0:1-2番ライン 1:2-1番ライン OK 0-5 OK	 ギャップ補正の設定 N=0:補正off (初期値) N=1:補正on ギャップ補正の方向 N=0:1番ラインの遅延=0、2番=LDELAY (初期値) N=1:2番ラインの遅延=0、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on 1番ライン: デジタルゲインの設定(初期値 N=0)
TL-16K5FOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン) 1番ライン デジタルゲイン値	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> tdiexidelay[?]<cr> tdi tdiCR></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1	OK 0:OFF 1:ON OK 0:1-2番ライン 1:2-1番ライン OK 0-5 OK	 ギャップ補正の設定 N=0:補正off (初期値) N=1:補正on ギャップ補正の方向 N=0:1番ラインの遅延=0、2番=LDELAY (初期値) N=1:2番ラインの遅延=0、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on
TL-16K5FOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン)	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> tdi tdiCR> ch1gain1=N<cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1 None N=0-255: gain level	OK 0:OFF 1:ON OK 0:1-2番ライン 1:2-1番ライン OK 0-5 OK N=0-1 OK	ギャップ補正の設定 N=0:補正のff (初期値) N=1:補正の ドャップ補正の方向 N=0:1番ラインの遅延=O、2番=LDELAY (初期値) N=1:2番ラインの遅延=O、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on 1番ライン:デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍
TL-16K5FOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン) 1番ライン デジタルゲイン値 の設定 2番ライン	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> Idelay[?]<cr> tdi tdiCR> ch1gain1=N<cr></cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1 None N=0-255: gain level	OK 0: OFF 1: ON OK 0:1-2番ライン 1: 2-1番ライン OK 0-5 OK	ギャップ補正の設定 N=0:補正のff (初期値) N=1:補正の ドャップ補正の方向 N=0:1番ラインの遅延=O、2番=LDELAY (初期値) N=1:2番ラインの遅延=O、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on 1番ライン: デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍 2番ライン: デジタルゲインの設定(初期値 N=0)
TL-16K5FOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン) 1番ライン デジタルゲイン値 の設定	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> tdi tdiCR> ch1gain1=N<cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1 None N=0-255: gain level	OK 0:OFF 1:ON OK 0:1-2番ライン 1:2-1番ライン OK 0-5 OK N=0-1 OK	ギャップ補正の設定 N=0:補正のff (初期値) N=1:補正の方向 N=0:1番ラインの遅延=O、2番=LDELAY (初期値) N=1:2番ラインの遅延=O、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on 1番ライン:デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍
TL-16K5FOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン) 1番ライン デジタルゲイン値 の設定 2番ライン デジタルゲイン値 の設定	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> Idelay[?]<cr> tdi tdiCR> ch1gain1=N<cr> ch2gain1=N<cr> ch2gain1[?]<cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1 None N=0-255: gain level None N=0-255: gain level	OK 0: OFF 1: ON OK 0: 1-2番ライン 1: 2-1番ライン OK 0-5 OK N=0-1 OK N=0-255 OK	ギャップ補正の設定 N=0:補正のff (初期値) N=1:補正の方向 N=0:1番ラインの遅延=O、2番=LDELAY (初期値) N=1:2番ラインの遅延=O、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on 1番ライン:デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍 2番ライン:デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍
TL-16KFOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン) 1番ライン デジタルゲイン値 の設定 2番ライン デジタルゲイン値	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay[?]<cr> tdi tdiCR> ch1gain1=N<cr> ch2gain1=N<cr></cr></cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1 None N=0-255: gain level None	OK 0: OFF 1: ON OK 0: 1-2番ライン 1:2-1番ライン OK 0-5 OK N=0-1 OK N=0-255 OK	ボャップ補正の設定 N=0:補正のff (初期値) N=1:補正の方向 N=0:1番ラインの遅延=O、2番=LDELAY (初期値) N=1:2番ラインの遅延=O、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on 1番ライン: デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍 2番ライン: デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64)
TL-16K5FOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン) 1番ライン デジタルゲイン値 の設定 2番ライン デジタルゲイン値 の設定	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> Idelay[?]<cr> tdi tdiCR> ch1gain1=N<cr> ch2gain1=N<cr> ch2gain1[?]<cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1 None N=0-255: gain level None N=0-255: gain level	OK 0: OFF 1: ON OK 0: 1-2番ライン 1: 2-1番ライン OK 0-5 OK N=0-1 OK N=0-255 OK	ボャップ補正の設定 N=0:補正off (初期値) N=1:補正on ボャップ補正の方向 N=0:1番ラインの遅延=O、2番=LDELAY (初期値) N=1:2番ラインの遅延=O、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on 1番ライン:デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍 型番ライン:デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍 垂直反転出力の設定(2ライン出力時に有効)
TL-16KFOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン) 1番ライン デジタルゲイン値 の設定 2番ライン デジタルゲイン値 の設定	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> Idelay[?]<cr> tdi tdiCR> ch1gain1=N<cr> ch2gain1=N<cr> reversey=N<cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1 None N=0-255: gain level None N=0-255: gain level None	OK 0: OFF 1: ON OK 0: 1-2番ライン 1: 2-1番ライン OK 0-5 OK N=0-1 OK N=0-255 OK	ボャップ補正の設定 N=0:補正off (初期値) N=1:補正on ボャップ補正の方向 N=0:1番ラインの遅延=0、2番=LDELAY (初期値) N=1:2番ラインの遅延=0、1番=LDELAY ボャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on 1番ライン: デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍 2番ライン: デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍 垂直反転出力の設定(2ライン出力時に有効) N=0:通常出力 (初期値) N=1:逆順出力 出力ライン数の設定(白黒タイプに有効)
TL-16K5FOL用コマンド	ギャップ補正の設定 ギャップ補正の方向 ギャップ補正値 (LDELAY) TDI (2ライン) 1番ライン デジタルゲイン値 の設定 2番ライン デジタルゲイン値 の設定 垂直反転出力	Idelay_on=N <cr> Idelay_on[?]<cr> Idelay_dir=N<cr> Idelay_dir[?]<cr> Idelay=N<cr> Idelay=N<cr> Idelay[?]<cr> tdi tdiCR> ch1gain1=N<cr> ch2gain1=N<cr> reversey=N<cr> reversey[?]<cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr>	N=0:OFF N=1:ON None N=0:1-2番ライン N=1:2-1番ライン None N:0-5 None N:0-1 None N=0-255: gain level None N=0-255: gain level None N-0-1 None N-0-1	OK 0:OFF 1:ON OK 0:1-2番ライン 1:2-1番ライン OK 0-5 OK N=0-1 OK N=0-255 OK N=0-255	ボャップ補正の設定 N=0:補正off (初期値) N=1:補正on ボャップ補正の方向 N=0:1番ラインの遅延=0、2番=LDELAY (初期値) N=1:2番ラインの遅延=0、1番=LDELAY ギャップ補正値の設定(2番ライン)(初期値=1) N=遅延ライン数(0-5) TDI(2ライン)の設定(白黒タイプに有効) N=0:TDI off (初期値) N=1:TDI on 1番ライン: デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍 2番ライン: デジタルゲインの設定(初期値 N=0) 1step=0.016(1/64) min=1倍(0) max=4.98倍 垂直反転出力の設定(2ライン出力時に有効) N=0:通常出力 (初期値) N=1:逆順出力

※ホワイトバランスの設定は、ビデオレベルを使用しますので、カメラを撮像状態にする必要があります。 ※デュアルラインモードとTDIモードを同時に使用することはできません。


6 その他注意事項

- ●CMOSイメージセンサーの保護ガラス上にゴミや埃が付くと、この部分のフォトダイオードは信号が出力 されませんので、欠陥画素と同じ症状になります。
- ●この場合はエアースプレーでゴミや埃を吹き飛ばして下さい。但し、この時エアースプレーから水滴が 吹き付けられる事がありますので注意して下さい。
- ●ラインスキャンカメラは直射日光の当たるような高温場所に保管しないように注意して下さい。
- ●ラインスキャンカメラに通電状態でカバーを開けたり、カメラリンクコネクタの抜き差しをすると動作不良や 故障の原因になりますのでお止め下さい。
- ●製品を破棄される場合は、専用の産業廃棄物処理業者に処理を委託して下さい。又、製品を使用する 国や地方の法律や条令に従って処理を行って下さい。
- ●強力なノイズが発生する機器の近く、静電気の強い場所で使用されないようにお願いします。又、アースが完全でない場合はノイズの誘導を受ける場合があり、誤動作の原因にもなりますのでご注意下さい。
- ●長期間保存する場合は、光コネクタ部分に付属のカバーを取り付け、ゴミや埃が付着しないようにしてください。
- ●電源投入から5分経過しても起動しない場合、または、正常な映像が出力されない場合は、一度電源をoff して30秒以上放置してから、再度電源をonしてください。
- ●低温状態でのカメラ起動について。 カメラ起動時に撮像素子が出力するデジタル映像データを正しく取り込むためのトレーニング(データの位相調整)をおこないますが、起動後にカメラ温度が大きく変化するとデジタルデータの位相が変化して映像にノイズが発生することがあります。この場合は、カメラの温度が上昇、安定してから一度電源を off、再度電源を on してください。温度が安定した状態でデジタル映像信号のトレーニングを行いますので、動作中の温度変化が小さくなり正常な映像を出力することができる様になります。
- ●弊社都合により予告無く仕様を変更する場合があります。

お願い

- ●本書の内容の一部または全部を無断転載する事は固くお断りします。
- ●本書の内容については将来予告無しに変更する事があります。
- ●本書にないようについては万全を期して作成致しましたが、万一ご不審な点や誤り、
- ●記載漏れなどお気づきの点がありましたらご連絡下さいますようお願いします。

7 外形図

- 以上 -

II

130